Graphical modelling for multivariate time series

نویسنده

  • Yasumasa Matsuda
چکیده

Graphical models for multivariate time series is a concept extended by Dahlhaus (2000) from a random vector to a time series. We propose a test statistic to identify a graphical model for multivariate time series with the Kullback-Leibler distance between two spectral density matrices characterized by graphical models. Asymptotic null distribution is derived to be normal with the mean and variance which depend just on the dimensions of the graphs, which makes the modelling procedure easy and practical.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Matrix-Variate Graphical Models

This paper introduces a novel class of Bayesian models for multivariate time series analysis based on a synthesis of dynamic linear models and graphical models. The synthesis uses sparse graphical modelling ideas to introduce structured, conditional independence relationships in the time-varying, cross-sectional covariance matrices of multiple time series. We define this new class of models and...

متن کامل

Graphical Modelling of Multivariate Time Series

We introduce graphical time series models for the analysis of dynamic relationships among variables in multivariate time series. The modelling approach is based on the notion of strong Granger causality and can be applied to time series with non-linear dependencies. The models are derived from ordinary time series models by imposing constraints that are encoded by mixed graphs. In these graphs,...

متن کامل

Structural learning with time-varying components: tracking the cross-section of financial time series

When modelling multivariate financial data, the problem of structural learning is compounded by the fact that the covariance structure changes with time. Previous work has focused on modelling those changes by using multivariate stochastic volatility models. We present an alternative to these models that focuses instead on the latent graphical structure that is related to the precision matrix. ...

متن کامل

Graphical Gaussian modelling of multivariate time series with latent variables

In time series analysis, inference about causeeffect relationships among multiple times series is commonly based on the concept of Granger causality, which exploits temporal structure to achieve causal ordering of dependent variables. One major problem in the application of Granger causality for the identification of causal relationships is the possible presence of latent variables that affect ...

متن کامل

Fitting Graphical Interaction Models to Multivariate Time Series

Graphical interaction models have become an important tool for analysing multivariate time series. In these models, the interrelationships among the components of a time series are described by undirected graphs in which the vertices depict the components while the edges indictate possible dependencies between the components. Current methods for the identification of the graphical structure are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004